Tensor Computation: Application to Power System Analysis

HyungSeon Oh
University at Buffalo
CERTS Review meeting, 6/10/2016

Acknowledgements

This project was funded through the DOE CERTS R&M program

Special thanks to **Professor Charles Francis Van Loan** at Cornell University for his valuable comments and suggestions for Tensor Computations

Contents

- Summary of the Achievements during 2014-15
- Unaddressed Questions
- Introduction
 - Voltage estimation from an SDP solution
 - Rank-1 Approximation
 - Power Flow Algorithms
 - State Estimation
 - Needs for a New Algorithm
- Tensor-based Algorithm
- Probabilistic Power Flow
- Conclusions

Summary of the Achievements during 2014-15 I

Summary of the Achievements during 2014-15 II

- Divide-and-conquer
 - Angular cut
 - Linear constraints in the SDP framework
 - Voltage magnitude cut
 - Linear constraints in the SDP framework
- Clique decomposition and merging
 - Control of the sizes of cliques for efficient computation
- Certificates of original AC OPF problems
 - Infeasibility
 - Global solution using the trust-region method
 - 0.1-2% of cost saving

Summary of the Achievements during 2014-15 II

- 14-bus case
 - Global solution found
 - ~3,000 nodes visited
- Identified problem
 - Same SDP solution found at parent and child nodes
 - Inappropriate cuts
 - Branching is based upon SDP solution
 - → Wrong voltage estimates

Big Question:

How do we find voltages to represent an SDP solution?

Big Question

- Angular and the voltage magnitude cuts
 - SDP solution is not feasible in the power flow domain
 - Projection of the SDP solution to the power flow domain
- Current approach
 - Rank-1 approximation from W → v
 - Projection of v on the feasible power flow domain
 - Projected voltage vector does not meet the power injections and flows from the SDP solution
- New approach
 - Voltage is not well defined in SDP for a multiple rank solution, but the power injections and flows are
 - Two approaches to extract voltage vector from
 - Power balance equations → Power Flow problem
 - All available information

 State estimation

Physically Not-Meaningful SDP Solution

$$W = \lambda_1 \mathbf{u}_1 \mathbf{u}_1^{\mathsf{T}} + \lambda_2 \mathbf{u}_2 \mathbf{u}_2^{\mathsf{T}} + \dots$$
 where $\lambda_1 >> \lambda_2 \geq \lambda_3 \geq \dots \geq 0$

- Problems that feasibility is marginally relaxed
 - 1st term approximation of W, i.e., $W = \lambda_1 u_1 u_1^T \rightarrow v = \sqrt{\lambda_1 u_1}$
 - Shortcoming: Unacceptable voltage magnitudes
- Power flow problem: power injections at all buses are known
 - 2N Equations and 2N-1 Unknowns
 - Use 2N-1 equations: N-1 Real power and N reactive power
 - Slack bus compensate system-wide power mismatch
- State Estimation
 - Power injections and voltage magnitudes: 3N information
 - Power flows: 4L information
 - Over-determined problem

1st Term Approximation

- 14-bus case
- Eigenvalue decomposition
 - 22 non-zero eigenvalues
 - λ_1 (= 14.26) >> λ_2 (= 0.0722) > ... > λ_{22} (= 0.0011) > 10⁻³
 - 1st term approximation $\rightarrow v_1$
 - $||W v_1 v_1^T||_2 / ||W||_2 = 0.005 \approx \lambda_2 / \lambda_1$
- Measurements, y
 - Voltage magnitudes from W
 - Real and reactive power injections
 - Real and reactive power flows
- Error in the measurements
 - True value \hat{y}_1 is estimated based on v_1

•
$$||y - \hat{y}_1||_2 / ||y||_2 = 0.237$$

$$v_{1} = \begin{cases} 1.048 \\ 1.042 - j0.026 \\ 1.010 - j0.112 \\ 1.003 - j0.068 \\ 1.008 - j0.051 \\ 1.028 - j0.045 \\ 1.006 - j0.057 \\ 1.030 + j0.007 \\ 0.989 - j0.091 \\ 0.982 - j0.087 \\ 0.995 - j0.068 \\ 0.997 - j0.064 \\ 0.992 - j0.067 \\ 0.962 - j0.097 \end{cases}$$

Power Flow Problems

- Power flow problem
 - Each node has
 - 4 variables: 2 voltages and 2 power injections
 - 2 power balance equations
 - Solve two unknowns when 2 variables are known
 - Slack bus: 2 voltages
 - PV bus: 1 voltage + 1 power injection
 - PQ bus: 2 power injections
- Current Algorithms
 - Newton-Raphson method
 - Gauss-Seidel method
 - Decoupled power flow method
 - Holomorphic Embedding
 - All the power mismatches are assigned to the slack bus
 - → No mismatch is allowed

Conventional Power Flow Algorithms

- NR, GS, DPF, and HELM include one slack bus
 - Voltages are known at that bus
- Slack bus in PF problems
 - System-wide power mismatch is assigned
 - Losses over a grid are compensated by the generator at the slack bus
 - Reference bus: voltage angle is fixed, usually zero
 - Voltage magnitude is known
- All the buses except one slack bus are converted to PQ buses, then PF problem is solved as a function of
 - The choice of the slack bus
 - Voltage magnitude at the slack bus

Power Flow Problems: Numerical Results

- Covert all PV and PQ buses to PQ buses
- Conventional method, v_C
 - $||W v_C v_C^T||_2 / ||W||_2 = 0.006$
 - Mismatches at the slack bus
 = 0.02MW and 0.04MVar
 - Losses = 4.69MW
 - $||y \hat{y}_c||_2 / ||y||_2 = 0.228$
- Comparison
 - $||W v_1 v_1^T||_2 / ||W||_2 = 0.005$
 - $||y \hat{y}_1||_2 / ||y||_2 = 0.237$
- Marginally better result

$$\begin{array}{c}
1.051 \\
1.044 - j0.026 \\
1.012 - j0.112 \\
1.006 - j0.068 \\
1.010 - j0.051 \\
1.031 - j0.045 \\
1.009 - j0.057 \\
1.033 + j0.007 \\
0.992 - j0.091 \\
0.985 - j0.087 \\
0.998 - j0.068 \\
1.000 - j0.063 \\
0.995 - j0.066 \\
0.965 - j0.097
\end{array}$$

State Estimation

- SDP solution yields
 - Voltage magnitudes, power injections, and flows
 - Over-determined problem
- Conventional state estimator
 - Power flow equations: $y = f(v) \rightarrow \Delta v = -\left[\left(\nabla_{v} f\right)^{T} W(\nabla_{v} f)\right]^{-1} \left(\nabla_{v} f\right)^{T} W[y f(v)]$
 - Find voltages and errors: $\delta v = -\left[(\nabla_v f)^T W (\nabla_v f) \right]^{-1} (\nabla_v f)^T W [y f(\hat{v})]$
 - Bad data detection and elimination
- Problems
 - Measurements y is not consistent
 - Average Jacobian $\overline{\nabla_{v}f}$ should be used instead
 - Gain matrix $(\nabla_{\nu} f)^T W(\nabla_{\nu} f)$ can be ill-conditioned

State Estimation: Numerical Results

- Pass the Chi-square test (k = 122 27 = 95)
- Weight factor
 - Injections at PQ bus = 1
 - Everything else = 0.8
- Conventional method, v_C

•
$$||D_{\sqrt{w}}(y - \hat{y}_c)||_2 / ||D_{\sqrt{w}}y||_2 = 0.208$$

•
$$||W - v_c v_c^T||_2 / ||W||_2 = 0.129$$

•
$$\|\delta v_c\|_2 / \|\hat{v}_c\|_2$$
 = 0.038

• $v_C = E\xi$, ξ has 22 non-zero elements

•
$$\xi_1$$
 (= 3.554) >> ξ_2 (=0.160)
> ... > ξ_{22} (= 0.001) > 10^{-3}

$$v_c^{SE} = \begin{pmatrix} 0.987 \\ 0.975 - j0.040 \\ 0.923 - j0.161 \\ 0.938 - j0.101 \\ 0.948 - j0.076 \\ 0.974 - j0.083 \\ 0.941 - j0.092 \\ 0.953 + j0.008 \\ 0.929 - j0.146 \\ 0.926 - j0.147 \\ 0.942 - j0.119 \\ 0.946 - j0.108 \\ 0.939 - j0.116 \\ 0.902 - j0.168 \end{pmatrix}$$

Summary: Conventional Algorithms

$$v_1 = \begin{pmatrix} 1.048 \\ 1.042 - j0.026 \\ 1.010 - j0.112 \\ 1.003 - j0.068 \\ 1.008 - j0.051 \\ 1.028 - j0.045 \\ 1.030 + j0.007 \\ 0.989 - j0.091 \\ 0.992 - j0.068 \\ 0.997 - j0.064 \\ 0.992 - j0.067 \\ 0.992 - j0.067 \\ 0.992 - j0.067 \\ 0.992 - j0.066 \\ 0.992 - j0.067 \\ 0.992 - j0.066 \\ 0.992 - j0.066 \\ 0.992 - j0.066 \\ 0.992 - j0.067 \\ 0.992 - j0.066 \\ 0.995 - j0.066 \\ 0.995 - j0.066 \\ 0.995 - j0.066 \\ 0.995 - j0.067 \\ 0.995 - j0.067 \\ 0.995 - j0.067 \\ 0.995 - j0.066 \\ 0.995$$

Summary II

Desired Capabilities in PF and SE Tools

- Operation of modern power systems
 - Uncertainty
- Technologies are ready
 - Renewables, smart grid technologies
 - Voltage control capability
- Current tools compute voltages
 - Using K individual equations $y_j = f_j(v)$ j = 1, 2, ..., K collectively solve for voltages
 - Difficult to integrate: Uncertainties and Errors
 - All the data must be
 - Either consistent with very small errors or outliers for SE
 - Exact without errors for PF

Conventional Power Flow Algorithms in CCS

- Power balance equations in the Cartesian coordinate system
 - Y_k : Y_{bus} matrix at Bus $k = G_k + jB_k$
 - Real (p_k) and reactive (q_k) power injections at Bus k
 - Voltage in CCS, v: $v^T G_k v = p_k$, $v^T B_k v = q_k$
- Voltage at Bus k
 - e_k is the k^{th} column vector of the identity matrix I_{2N}
 - Voltage magnitude at PV buses $v^{T}E_{k}E_{k}^{T}v = \left|v_{k}\right|^{2}$ where $E_{k} = \left[\begin{array}{cc}e_{k}&e_{k+N}\end{array}\right]$
 - Voltage angle at the slack bus $v^{T}e_{ref+N}e_{ref+N}^{T}v=\theta_{ref}=0$
- Generalized form with a symmetric matrix *M*:

$$v^T M v = c$$

Kronecker Product

- Two dimensional matrix -> one dimensional vector
- Matrix-vector multiplication → vector-vector multiplication
- Kronecker product converts all the equations in a linear form

Tensor-based Power System Analysis

- Kronecker product ⊗
 - Bridge between tensor and matrix computations
 - Power balance equations

$$vec(G_k)(v \otimes v) = p_k, \ vec(B_k)(v \otimes v) = q_k$$

Power flows

$$vec(G_{km})(v \otimes v) = p_{km}, \ vec(B_{km})(v \otimes v) = q_{km}$$

- Voltage magnitudes: $vec(E_k E_k^T)(v \otimes v) = |v_k|^2$
- Voltage angles: $vec(e_{ref+N}e_{ref+N}^T)(v \otimes v) = \theta_{ref} = 0$
- Generalized equation: $vec(A_k)(v \otimes v) = b_k$

Application to Power Flow Algorithm

- Exact case
 - PF has a just-determined system
 - 2N unknowns and 2N equations
 - Power flow equations become
 - Bi-linear in V: $\begin{vmatrix} vec(A_1) \\ \vdots \\ vec(A_{2N}) \end{vmatrix} (v \otimes v) = \begin{pmatrix} b_1 \\ \vdots \\ b_{2N} \end{pmatrix}$
- Inexact case but just-determined system
 - Slack bus: only angle is known → |v|_{ref} unknown
 - Same as other buses
 - Real power constraint

• Real power constraint
• Uncertainty will be associated with constraints as
$$w$$
• Weighted least square problem:
$$\begin{bmatrix} w_1 vec(A_1) \\ \vdots \\ w_{2N} vec(A_{2N}) \end{bmatrix} (v \otimes v) = \begin{bmatrix} w_1 b_1 \\ \vdots \\ w_{2N} b_{2N} \end{bmatrix}$$

Power Flow Problems: Numerical Results

- Covert all PV and PQ buses to PQ buses
- Kronecker product, v_K
 - $||W v_K v_K^T||_2 / ||W||_2 = 0.06$
 - Mismatches are distributed over all buses (≤ 10⁻³)
 - Losses = 4.36MW and -26.34MVar
 - $||y \hat{y}_K||_2 / ||y||_2 = 0.224$
- Conventional method, v_C
 - $||W v_C v_C^T||_2 / ||W||_2 = 0.06$
 - Mismatches at the slack bus: 0.02MW and 0.04MVar
 - Losses = 4.57MW and 18.34MVar
 - $||y \hat{y}_c||_2 / ||y||_2 = 0.228$

$$1.048$$

$$1.042 - j0.026$$

$$1.010 - j0.112$$

$$1.003 - j0.068$$

$$1.008 - j0.051$$

$$1.028 - j0.045$$

$$1.006 - j0.057$$

$$1.030 + j0.007$$

$$0.989 - j0.091$$

$$0.982 - j0.087$$

$$0.995 - j0.068$$

$$0.997 - j0.064$$

$$0.992 - j0.067$$

$$0.962 - j0.097$$

Comparison I: Exact Solution

- Conventional power flow problem
 - PV, PQ, and slack buses
- Computation errors
 - Difference between estimated and target values
 - HELM: difficult to reduce the error
 - Proposed method yields similar error range
- Computation cost with the size of the system
 - FDPF, GS, NR, and proposed method: linearly increases
 - HELM: sub-linear increase if # terms is known for Pade approxs.

Comparison II: Just-determined System

- Conventional methods
 - Slack bus is fixed
 - All other buses are PQ buses
 - Losses wrt voltage magnitude at the slack bus
- Proposed method
 - Add additional equation to make losses small
 - No predetermined slack bus

Comparison III: Just-determined System

- IEEE 30-bus case
 - 1 slack bus
 - 5 PV buses
 - 24 PQ buses
- Voltage magnitudes are fixed at PV buses
- Choose 1 slack bus and change |v|_{slack} to minimize losses
- High computation time
- Proposed method finds proper voltages with no selection of slack bus

New State Estimation Algorithm

- Kronecker product ⊗
 - Measurements y become
 - Bi-linear in \mathbf{v} : $D_{\sqrt{w}}\begin{bmatrix} vec(A_1) \\ \vdots \\ vec(A_Y) \end{bmatrix} (v \otimes v) = D_{\sqrt{w}}\begin{bmatrix} y_1 \\ \vdots \\ y_Y \end{bmatrix} \rightarrow \hat{v}$
 - Error in V: $D_{\sqrt{w}} \begin{bmatrix} \hat{v}^T A_1 \\ \vdots \\ \hat{v}^T A_Y \end{bmatrix} \delta v = D_{\sqrt{w}} \begin{bmatrix} y_1 \hat{v}^T A_1 \hat{v} \\ \vdots \\ y_Y \hat{v}^T A_Y \hat{v} \end{bmatrix} \rightarrow \delta v$
 - Bad data detection and elimination

State Estimation: Numerical Results

- Kronecker product, v_K
 - $||D_{\sqrt{w}}(y \hat{y}_{K})||_{2} / ||D_{\sqrt{w}}y||_{2} = 0.022$
 - $||W v_K v_K^T||_2 / ||W||_2 = 0.088$
 - $\|\delta v_{K}\|_{2}/\|\hat{v}_{K}\|_{2} = 0.017$
 - $v_K = E\zeta$, ζ has 14 non-zero elements
 - ζ_1 (=3.606) >> ζ_2 (=0.024) > ... > ζ_{14} (=0.001) > 10⁻³
- Conventional method, v_C
 - $||D_{\sqrt{w}}(y \hat{y}_C)||_2 / ||D_{\sqrt{w}}y||_2 = 0.208$
 - $||W v_C v_C^T||_2 / ||W||_2 = 0.129$
 - $\|\delta v_{K}\|_{2}/\|\hat{v}_{K}\|_{2} = 0.038$
 - $v_C = E\xi$, ξ has 22 non-zero elements

•
$$\xi_1$$
 (= 3.554) >> ξ_2 (=0.160) > ... > ξ_{22} (= 0.001) > 10⁻³

$$v_{K}^{SE} = \begin{bmatrix} 1.050 \\ 1.044 - j0.023 \\ 1.017 - j0.099 \\ 1.008 - j0.062 \\ 1.012 - j0.046 \\ 1.037 - j0.040 \\ 1.011 - j0.052 \\ 1.026 + j0.004 \\ 0.999 - j0.080 \\ 0.995 - j0.076 \\ 1.008 - j0.059 \\ 1.010 - j0.057 \\ 1.006 - j0.059 \\ 0.980 - j0.083 \end{bmatrix}$$

Proposed Probabilistic Power Flow Algorithm

- Accommodates
 - Uncertainties on power injections
 - Capabilities of the improved control on voltage magnitudes
 - Mismatches on injection
- A new PPF algorithm
 - Includes the uncertainties, capabilities, and mismatches
 - Estimates the best fitting voltages

$$\begin{bmatrix} w_{1}vec(A_{1}) \\ \vdots \\ w_{k_{1}}vec(A_{k}) \\ \vdots \\ w_{k_{K}}vec(A_{k}) \end{bmatrix} (v \otimes v) = \begin{bmatrix} w_{1}b_{1} \\ \vdots \\ w_{k_{1}}b_{k_{1}} \\ \vdots \\ w_{k_{K}}b_{k_{K}} \end{bmatrix}$$

$$\vdots$$

$$w_{2N}vec(A_{2N})$$
Same matrix but different realizations
$$\vdots$$

$$w_{2N}b_{2N}$$

Numerical Results

- 4-bus system
 - Slack bus: inflexible |v₄|
 - 1 PV bus 1: Flexible $|v_1|$
 - 2 PQ buses
 - Wind at Bus 3
 - Low/High scenario
- Numerical results
 - Black: PF on average
 - Red: proposed method
 - Injection error at Bus 3
 - Black: -10MW +50MW
 - Red: -7MW +42MW
 - Losses
 - 8.4MW vs. 7.7MW

Conclusions

- Three methods to extract voltages from a multiple-rank SDP solution
 - Rank-1 approximation from W
 - Power flow analysis from injections
 - State estimation using W, injections, and power flows
 - → State estimation yields a reasonable estimate of voltages
- A new power flow algorithm and state estimation technique are proposed using Kronecker product
 - Incorporate the capability of a generator in voltage control and the uncertainty of injections
 - Tend to minimize real power losses

